Как прозвонить тепловое реле

Самым необходимым прибором, как в квартире, так и в частном доме, является холодильник. И с этим утверждением сложно не согласиться, не так ли? Сложно найти жилище, где него нет. Как и любые приборы, холодильники могут ломаться. Но бывают ситуации, когда поломку можно диагностировать самостоятельно.

Практически все бытовое холодильное оборудование снабжено однофазным двигателем. Для его старта приходится использовать пусковое устройство. Если эта простая, но важная деталь выходит из строя, то компрессор перестанет запускаться. Но, зная принципы работы прибора, можно определить проблему и ее исправить.

В этой статье речь пойдет о том, как работает пусковое реле для холодильника и о признаках его неисправности. Мы расскажем, как установить неполадки в работе холодильного оборудования. Представленные нами видеоролики помогут понять принцип работы пускового устройства, а также в случае необходимости выявить его неисправность.

Запуск однофазного асинхронного электродвигателя

По своей сути моторы компрессоров, установленных в современные холодильники, представляют собой однофазные асинхронные электродвигатели с пусковой обмоткой. Их основными компонентами являются вращающийся ротор и стационарный статор.

Ротор представляет собой полый цилиндр, выполненный из токопроводящего материала или содержащий короткозамкнутую проводку.

Статор включает две обмотки: рабочую (основную) и пусковую (стартовую). Они взаиморасположены под углом 90 градусов, либо имеют противоположное направление намотки – так называемый “бифиляр”. Переменный ток, проходя по основной обмотке, создает магнитное поле с изменяющимся вектором.

Если ротор не статичен, то по закону электромагнитной индукции двигатель будет развивать или тормозить вращающий момент, так как скольжение относительно прямо- и обратнонаправленного магнитного потока отличается. Поэтому для поддержания движения достаточно переменного тока, проходящего по рабочей обмотке.

Если ротор неподвижен, то при одинаковом скольжении относительно магнитных потоков результирующий электромагнитный момент будет равен нулю. В этом случае необходимо создать пусковой момент. Для этого и нужна стартовая обмотка.

Токи в обмотках должны быть сдвинуты по фазе, поэтому в двигатель внедряют фазосмещающий элемент – регистр, дроссель или конденсатор. После достижения ротором необходимого вращения, подача электричества на стартовую обмотку прекращается.

Таким образом, для старта однофазного асинхронного электродвигателя необходимо прохождение тока по двум обмоткам, а для поддержания вращения ротора – только по рабочей. Для регулирования этого процесса в цепи перед компрессором холодильника и устанавливают пусковое реле.

Принцип работы пускового реле

Несмотря на большое количество запатентованных продуктов от различных производителей, схемы работы холодильников и принципы действия пусковых реле практически одинаковы. Разобравшись в принципе их действия можно самостоятельно отыскать и устранить неисправность.

Схема устройства и подключение к компрессору

Электрическая схема реле имеет два входа от источника питания и три выхода на компрессор. Один вход (условно – ноль) проходит напрямую.

Другой вход (условно – фаза) внутри устройства расщепляется на два:

  • первый проходит напрямую на рабочую обмотку;
  • второй проходит через разъединяющиеся контакты на пусковую обмотку.

Если реле не имеет посадочного места, то при подключении к компрессору необходимо не ошибиться с порядком соединения контактов. Распространенные в Интернете способы определения типов обмотки с помощью измерения сопротивления не верны в общем случае, так как у некоторых двигателей сопротивление пусковой и рабочей обмотки одинаковы.

Поэтому необходимо найти документацию или разобрать компрессор холодильника для понимания расположения проходных контактов.

Также это можно сделать при наличии символьных идентификаторов возле выходов:

  • “S” – пусковая обмотка;
  • “R” – рабочая обмотка;
  • “C” – общий выход.

Реле отличаются способом крепления на раме холодильники или на компрессоре. Также они имеют свои токовые характеристики, поэтому при замене необходимо подобрать полностью идентичное устройство, а лучше – той же модели.

Замыкание контактов посредством индукционной катушки

Электромагнитное пусковое реле работает по принципу замыкания контакта для пропуска тока через пусковую обмотку. Основной действующий элемент устройства – соленоидная катушка, последовательно включенная в цепь с основной обмоткой двигателя.

В момент запуска компрессора, при статичном роторе, по соленоиду проходит большой стартовый ток. В результате этого создается магнитное поле, которое перемещает сердечник (якорь) с установленной на нем токопроводящей планкой, замыкающей контакт пусковой обмотки. Начинается разгон ротора.

При увеличении числа оборотов ротора, величина проходящего через катушку тока снижается, вследствие чего напряжение магнитного поля уменьшается. Под действием компенсирующей пружины или силы тяжести сердечник возвращается на исходное место и контакт размыкается.

Мотор компрессора продолжает работать в режиме поддержания вращения ротора, пропуская ток через рабочую обмотку. Следующий раз реле сработает только после остановки ротора.

Регулирование подачи тока позистором

Выпускаемые для современных холодильников реле часто используют позистор – разновидность теплового резистора. Для этого устройства существует температурный диапазон, ниже которого оно пропускает ток с незначительным сопротивлением, а выше – сопротивление резко увеличивается и происходит размыкание цепи.

В пусковом реле позистор интегрирован в цепь, ведущую к стартовой обмотке. При комнатной температуре сопротивление этого элемента незначительное, поэтому при начале работы компрессора ток проходит беспрепятственно.

По причине наличия сопротивления позистор постепенно нагревается и по достижению определенной температуры происходит размыкание цепи. Остывает он только после прекращения подачи тока на компрессор и снова срабатывает на пропуск при повторном включении двигателя.

Реализация защиты токового типа

Асинхронный мотор представляет собой сложный электрический прибор, который подвержен поломкам. Если произойдет короткое замыкание, то сработает автоматический выключатель, установленный в распределительном щите.

При отказе вентилятора, который охлаждает обмотку и механические подвижные элементы, среагирует встроенная тепловая защита компрессора.

Однако может возникнуть ситуация, когда мотор длительное время (более 1 секунды) начинает потреблять ток больше номинального в 2-5 раз. Чаще всего это происходит при незапланированной нагрузке на валу, возникающей из-за заклинивания двигателя.

Сила тока возрастает, однако не достигает значений короткого замыкания, поэтому подобранный по нагрузке автомат не сработает. Причин отключения у тепловой защиты тоже нет, так как температура за такой короткий промежуток времени не изменится.

Единственный способ оперативно среагировать на возникшую ситуацию и избежать оплавления рабочей обмотки – срабатывание токовой защиты, которая может быть установлена в разных местах:

  • внутри компрессора;
  • в отдельном токозащитном реле;
  • внутри пускового реле.

Устройство, сочетающее функции включения пусковой обмотки и токовой защиты двигателя называют пускозащитным реле. Большинство компрессоров холодильников комплектуют именно таким механизмом.

Действие токовой защиты основано на трех принципах:

  • при увеличении силы тока возрастает сопротивление, что приводит к нагреву токопроводящего материала;
  • под действием температуры происходит расширение металла;
  • термический коэффициент расширения для разных металлов отличается.

Поэтому используют биметаллическую пластину, которая сварена из металлических листов с отличающимися коэффициентами расширения. Такая пластина изгибается при нагреве. Один ее конец фиксируют, а второй, отклоняясь, размыкает контакт.

Читайте также:  Как вырезать отверстие в бампере

Пластина рассчитана на температурное реагирование при прохождении тока определенной силы. Поэтому при замене пускозащитного реле необходимо проверить его совместимость с установленной моделью компрессора.

Выявление возможных неисправностей

Учитывая незначительное количество элементов реле, можно последовательно проверить их на работоспособность. Для этого понадобится плоская отвертка и мультиметр.

№ 1 — неполадки при работе реле

С конструктивных позиций, реле с катушкой является устройством с нормально разомкнутыми контактами, а позисторный вариант – с нормально замкнутыми контактами. Хотя и в том и в другом случае возможны варианты, когда при старте будет отсутствовать подача тока на пусковую обмотку или, наоборот, не сработает ее отключение.

Если компрессор исправен, но не включается по команде, поданной с блока управления холодильником, то это сигнализирует об отсутствие напряжения на пусковой обмотке статора.

Причиной этого может быть:

  • разрыв электрической цепи;
  • проблема контактной планки;
  • перегрев позистора;
  • срабатывание системы электрической защиты и ее невозврат в нормальное положение.

Если холодильник включается на 5-20 секунд, а потом отключается, то чаще всего это является следствием срабатывания защитного механизма реле.

Причины могут быть следующие:

  • защитный механизм исправен, а срабатывание происходит по причине проблем в рабочей обмотке двигателя;
  • защитный механизм исправен, но в реле не происходит размыкание контактов в цепи стартовой обмотки;
  • защитный механизм неисправен, происходит ложное срабатывание при незначительном нагреве.

Так как причин неисправности может быть несколько, то необходимо провести полную диагностику пускозащитного реле холодильника.

№2 — неисправности контактов электроцепи

Неисправность пускозащитного реле можно выявить с помощью мультиметра.

Для этого необходимо прозвонить три участка электрической цепи:

  1. Если на участке от входа до выхода на рабочую обмотку есть обрыв, то необходимо проверить место размыкания контактов защитным механизмом. Возможно, что он сработал и не вернулся в исходное состояние или окислились размыкаемые контакты.
  2. Если нет контакта на участке от входа до выхода на пусковую обмотку, то помимо банального разрыва токопроводящей жилы возможны два варианта: размыкание цепи защитным механизмом или отсутствие контакта через планку.
  3. Обрыв на прямом (нулевом) участке означает механическое повреждение цепи – его легче всего найти и исправить.

Если работа реле основана на использовании индукционной катушки, то необходимо принудительно поднять планку – иначе контакта не будет.

№3 — некорректная работа позистора

Чтобы убедиться в том, что позистор работает исправно, необходимо проверить его в холодном и нагретом состоянии.

В первую очередь надо подождать, когда позистор остынет (достаточно 2-3 минуты в неработающем состоянии) и прозвонить его с помощью мультиметра. В случае отсутствия тока или регистрации большого сопротивления, позистор неисправен и его нужно заменить.

Для проверки способности разъединения, нужно подключить к позистору потребителя электроэнергии, например, стоваттную лампу накаливания. Для этого нужна электрическая вилка с двумя клеммами, которые подсоединяют на вход в устройство. Провода от лампы подсоединяют к разъемам, ведущим на ноль и пусковую обмотку.

При включении вилки в розетку лампочка загорится. Так как номинал проходящего тока в эксперименте значительно меньше, чем при пуске компрессора, то позистор будет долго нагреваться – для стоваттной лампы время реагирования составит 20-40 секунд.

Если через некоторое время лампочка погаснет, то устройство исправно. Если потребитель не будет обесточен, то это означает, что позистор нерабочий. В домашних условиях его ремонт невозможен, стоит он недорого, поэтому необходимо приобрести аналогичный по параметрам элемент.

№4 — проблемы с контактной планкой

Существует два типа проблем с контактной планкой:

  • не происходит пропуск тока при замыкании контактов;
  • планка залипает и не опускается.

Первая проблема может возникнуть по причине окисления контактов. В этом случае необходимо их зачистить наждачной бумагой. Также причиной может быть искривление положения планки, тогда необходимо установить ее горизонтально.

Более сложная проблема – место сочленения планки и штыря, на который воздействует магнитное поле соленоида. Решение проблемы здесь индивидуальное и зависит от типа неисправности.

Залипание планки выражается в том, что она не отходит вместе с сердечником. Для этого необходимо почистить контакты, чтобы удалить клеящее вещество и сделать их гладкими.

№5 — нештатное срабатывание токовой защиты

Если при прозвоне обнаруживается отсутствие контакта от входа до обеих обмоток, то, скорее всего, обрыв произошел в зоне защиты.

В большинстве случаев это или отход контакта, который размыкает биметаллическая пластина, или повреждение в районе нагревающей спирали.

Если исправить повреждение иначе не удается, то придется приобретать новое реле.

Выводы и полезное видео по теме

Видео #1. Обзор принципа действия, типов и основных неисправностей пускозащитного реле:

Видео #2. Признаки поломок распространенного пускового реле РКТ. Подключение внешнего конденсатора для компенсации нестабильного напряжения:

Видео #3. Прозвон двигателя и реле. Ремонт катушки:

Несложная конструкция пускового реле позволяет самостоятельно находить неисправности и легко устранять их. Для этого не нужны глубокие знания в электрике или специальный инструмент.

Однако необходимо соблюдать пунктуальность, так как от качества проведенных работ зависит функциональность дорогостоящего оборудования.

Хотите рассказать о том, как подбирали пусковое реле для восстановления работоспособности холодильного агрегата? Располагаете полезными сведениями по теме статьи, которыми стоит поделиться с посетителями сайта? Пишите, пожалуйста, комментарии в находящемся ниже блоке, размещайте фотоснимки, задавайте вопросы.

Основным средством защиты электроприводов от перегрузок в настоящее время являются тепловые реле, а также автоматические выключатели с тепловыми расцепителями. Наибольшее распространение получили двухполюсные реле типа ТРН и ТРП, а также трехполюсные — РТЛ, РТТ. Последние имеют улучшенные характеристики и обеспечивают защиту от несимметричных режимов.

При 20 % перегрузке тепловое реле должно отключать электродвигатель за время не более 20 мин, а при двукратной перегрузке – примерно за 2 мин. Однако это требование часто не выполняется по той причине, что номинальный ток нагревательного элемента теплового реле не соответствует номинальному току защищаемого электродвигателя. На работу тепловых реле существенное влияние оказывает температура окружающей среды.

Основным параметром тепловых реле является время-токовая защитная характеристика, т. е. зависимость времени срабатывания от величины перегрузки.

Первая из них – для реле, находящегося в холодном состоянии (разогрев током начинается, когда реле имеет температуру, равную температуре окружающей среды), и вторая – для реле, находящегося в горячем состоянии (режим перегрузки наступает после работы реле в течение 30 – 40 мин под номинальным током).

Рис. 1. Защитные характеристики теплового реле: 1 – зона срабатывания из холодного состояния, 2 – зона срабатывания из горячего состояния

Для обеспечения надежного и своевременного отключения электродвигателя при перегрузке тепловое реле должно настраиваться на специальном стенде. При этом исключается ошибка из-за естественного разброса номинальных токов заводских нагревательных элементов.

При проверке и настройке тепловой защиты на стенде используется так называемый метод фиктивных нагрузок. Через нагревательный элемент пропускают ток пониженного напряжения, имитируя таким образом реальную нагрузку, и по секундомеру определяют время срабатывания. В процессе настройки необходимо стремиться к тому, чтобы 5. 6-кратный ток отключался через 9 – 10 с, а 1,5-кратный через 150 с (при холодном состоянии нагревателя).

Читайте также:  Чем разбавлять краску металлик

Для настройки тепловых реле можно использовать серийно выпускавшиеся cпециализированные стенды.

На рис. 2 показана схема такого устройства. Приспособление состоит из маломощного нагрузочного трансформатора TV2, к вторичной обмотке которого подключается нагревательный элемент теплового реле КК, а напряжение первичной обмотки плавно регулируется автотрансформатором TV1 (например ЛАТР-2). Ток нагрузки контролируется амперметром РА, включенным во вторичную цепь через трансформатор тока.

Рис. 2. Принципиальная схема установки для проверки и настройки тепловых реле

Тепловое реле проверяют следующим образом. Ручку автотрансформатора устанавливают в нулевое положение и подают напряжение, затем поворотом ручки устанавливают ток нагрузки I = 1,5 I ном и секундомером контролируют время срабатывания реле (в момент погасания лампы HL). Операцию повторяют для остальных нагревательных элементов реле.

Если время срабатывания хотя бы одного из них не соответствует норме, тепловое реле следует отрегулировать. Регулировка производится специальным регулировочным винтом. При этом добиваются, чтобы при токе I = 1,5 I ном время срабатывания составляло 145 – 150 с.

Отрегулированное тепловое реле следует настроить на номинальный ток двигателя и температуру окружающей среды. Это делают в том случае, когда номинальный ток нагревательного элемента отличается от номинального тока электродвигателя (на практике в основном так и бывает) и когда температура окружающего воздуха ниже номинальной ( + 40° С) более чем на 10° С. Токовую уставку реле можно регулировать в пределах 0,75 – 1,25 номинального тока нагревателя. Настройка производится в следующей последовательности.

1. Определяют поправку (E1) реле на номинальный ток двигателя без температурной компенсации ±Е1 = ( I ном- I о)/С I о,

где Iном – номинальный ток двигателя, I о – ток нулевой уставки реле, С — цена деления эксцентрика (С = 0,05 для открытых пускателей и С = 0,055 для защищенных).

2. Определяют поправку на температуру окружающей среды E2=(t – 30)/10,

где t — температура окружающей среды, °С.

3. Определяют суммарную поправку ±Е=(±Е1) + (-Е2).

При дробной величине Е ее следует округлить до целого в большую или меньшую сторону в зависимости от характера нагрузки.

4. На полученное значение поправки переводят эксцентрик теплового реле.

Тщательно отрегулированные тепловые реле типа ТРН и ТРП имеют защитные характеристики, мало отличающиеся от средних. Однако такие реле не обеспечивают защиту электродвигателя в случае заклинивания, а также электродвигателей, не запустившихся при обрыве фазы.

Помимо магнитных пускателей c тепловыми реле в электроприводах для нечастых пусков их и защиты электрических цепей от коротких замыканий используются автоматические выключатели. При наличии комбинированных расцепителей такие аппараты защищают электроприемники также от перегрузки. Характерные параметры автоматических выключателей: минимальный ток срабатывания – (1,1. 1,6) I ном, уставка электромагнитного расцепителя – (3 – 15) I ном, время срабатывания при токе I = 16 I ном – менее 1 с.

Испытание тепловых элементов расцепителей автоматов проводят аналогично проверке тепловых реле. Испытание выполняется током 2 I ном при температуре окружающей среды +25° С. Время срабатывания элемента (35 – 100 с) должно находиться в пределах, указанных в заводской документации или найденных по защитной характеристике каждого автомата. Настройка тепловых элементов заключается в установке при помощи винтов биметаллических пластинок на одинаковое время срабатывания при одинаковом токе.

Для проверки электромагнитного расцепителя автоматического выключателя через него от нагрузочного устройства пропускают ток на 15% меньше тока уставки (тока отсечки). Затем плавно увеличивают испытательный ток до отключения аппарата. При этом максимальное значение тока срабатывания не должно превышать ток уставки электромагнитного расцепителя более чем на 15 %. Испытание проводится не более 5 с во избежание недопустимого перегрева контактов выключателя.

Для проверки расцепителя минимального напряжения на зажимы автоматического выключателя подают напряжение U = 0,8Uном и включают аппарат, затем напряжение плавно понижают до момента срабатывания Uc = (0,35 – 0,7)Uном.

В последнее время в промышленности стали использовать полупроводниковые аппараты защиты и управления. Вместо обычных магнитных пускателей, например, применяют специальные тиристорные блоки. Техническое обслуживание таких устройств заключается в периодических внешних осмотрах и проверке работоспособности.

Следующим шагом необходимо проверить следующий элемент пускорегулирующей аппаратуры – тепловое реле. Принцип работы теплового реле прост. Ток протекающий по проводнику совершает работу, в результате которой выделяется тепло.

В зависимости от сечения и материала проводника, а так же силы протекающего тока в нём проводник может нагреваться. При превышении определенного теплового значения, на которое настроено тепловое реле, биметаллическая пластина, установленная внутри теплового реле и по которой протекает ток, начинает изгибаться под воздействием тепла и происходит разрыв вспомогательных контактов.

На данном реле, после отключения напряжения питания и проверки его отсутствия, необходимо проверить:

качество болтовых соединений

наличие нагара на контактах, если нагар присутствует его необходимо убрать при помощи кусочка мелкой наждачной бумаги.

При помощи мультиметра прозваниваются вспомогательные контакты. Мультиметр в данном случае выставляется на измерение сопротивления, либо,если присутствует такая функция, на прозвонку, то есть при замыкании щупов между собой мультиметр будет издавать звук напоминающий пищание.

Один щуп присоединяется к одному вспомогательному контакту, второй щуп присоединяется ко второму вспомогательному контакту. Если не слышен "писк" или мультиметр не показывает какое либо малое сопротивление, то необходимо произвести восстановление реле кнопкой сброса, обычно она располагается на передней панели теплового реле (перед этим сработавшему реле следует дать остыть в течении пары минут, иначе реле может не восстановиться).

Но, если после произведенных мероприятий вспомогательные контакты теплового реле не прозваниваются, следовательно проблема в ней. Скорее всего реле пришло в негодность и её следует заменить на аналогичную. При установке теплового реле необходимо четко следить за выставляемыми параметрами. Они должны соответствовать номиналу потребителя, в данном случае электродвигателя.

По правилам тепловое реле должно срабатывать при протекании через него полуторократного номинального тока потребителя в течении 90 с. На передней панели тепловое реле обычно присутствует градуировка значений срабатывания реле и "клювик", которым необходимое значение выбирается. То есть, например, имеется электродвигатель номинальным током 2,5А, то на тепловом реле необходимо повернуть "клювик" на соответствующее значение.

Контактные соединения теплового реле чаще всего затягиваются отверткой. Отвертка для электромонтажных работ должна иметь обозначение о соответствующем работе классе изоляции. Так же должен быть изолирован стержень. Отвертку следует держать в руке прижатой торцом рукояти к середине ладони и плотно обхватив пальцами. При затягивании контактных соединений теплового реле рекомендуется проявлять осторожность и придерживать само реле свободной рукой. Чтобы не привести изделие в негодность.

После проверки теплового реле и убедившись в его работопригодности следующим шагом является переход к немаловажному элементу пускорегулирующей аппаратуры – кнопочному посту.

Кнопочный пост состоит из двух кнопок, нажатие на одну из которых запускает двигатель путем замыкания цепи питания катушки магнитного пускателя, после чего контактор магнитного пускателя замыкается и пропускает через себя ток на тепловое реле и далее на электродвигатель. Нажатие на вторую кнопку разрывает цепь питания катушки магнитного пускателя, что, соответственно, прекращает питание электродвигателя.

Читайте также:  Дверь холодильника сильно присасывается

Сначала проверяется работоспособность кнопки "стоп". Для этого, убедившись, что напряжение питания схемы управления снято, снимается стопор с кнопки, если он был установлен. Кнопка "стоп" имеет нормальнозамкнутый контакт. То есть в нормальном состоянии, когда она не нажата, кнопка "стоп" замыкает цепь. Чтобы это проверить необходимо воспользоваться мультиметром.

Мультиметр выставляется на прозвонку либо на измерение сопротивления. Один щуп мультиметра присоединяеься к одному контакту кнопки, второй щуп – ко второму. Табло мультиметра должно показать очень малое сопротивление – сопротивление контактов кнопки.

Если контакт не прозванивается, посмотрите внимательно, правильно ли вы установили щупы мультиметра и шкалу измерения прибора. Если всё сделано правильно, а контакт всё равно не прозванивается, то это значит, что кнопка неисправна, и её следует заменить на аналогичную.

Все нижеследующие операции производятся при отключенном напряжении и выполненных мерах, препятствующих случайную подачу напряжения на пускорегулирующую аппаратуру.

При установке новой кнопки необходимо следить за правильным соединением контактов. Выяснив, что контакт кнопки "стоп" в нормальном состоянии прозванивается, то есть исправен, проверяем кнопку "стоп" на срабатывание. Если нет возможности соединить один из контактов кнопки и один из щупов так, чтобы создавался надежный контакт между ними и не было необходимости поддерживать их рукой, то целесообразно привлечь напарника, либо работника из числа электротехнического персонала, чтобы тот нажал кнопку "стоп".

При нажатии кнопки "стоп" табло мультиметра должно показать сопротивление близкое к бесконечности. Если этого не происходит делаем вывод, что кнопка "стоп" является неисправной и подлежит замене.

После проверки кнопочного поста следующий шаг – переход к проверке электромагнитного пускателя. Основной частью электромагнитного пускателя является его катушка. Она может быть рассчитана на напряжение питания 220В, либо 380В. Питание катушки магнитного пускателя берется с силовых контактов до пускателя.

Контакты катушки находятся на корпусе магнитного пускателя, один сверху, другой снизу. Либо оба сверху. Обычно за силовыми контактами. Для проверки целостности катушки её необходимо прозвонить, прозвонка осуществляется аналогично прозвонке кнопки, кабеля и т.д. Мультиметр должен показать сопротивление около 250Ом. В любом случае если катушка прозванивается, это значит, что она цела.

Далее переход к проверке силовых контактов пускателя. Для проведения данной проверки потребуется мультиметр. И отвертка. Так как придётся зажимать силовые контакты вручную. В идеале потребуется снять крышку контактора магнитного пускателя, чтобы проверить состояние контактов.

При необходимости заменить испорченные детали. Это могут быть и неподвижные группы контактов и лепестки контактов, которые шунтируют неподвижные контакты.

Чаще всего происходит обгорание рабочих зон контактов. В этом случае необходимо аккуратно очистить их от гари мелкой наждачкой. Но следует быть осторожным, чтобы не зачистить слишком много металла и не испортить плотность контакта. Прозвонка контактов контактора производится точно так же как прозвонка кнопок. При выключенном напряжении питания, с соблюдением техники безопасности при производстве работ.

Проводить прозвонку контактов удобнее вдвоем. Когда один зажимает рукой или отверткой подвижный контакт контактора и создаёт цепь с неподвижными, а второй поочередно прозванивает параллельные группы контактов. Прилегание контактов должно быть плотным, хождение подвижного контакта четким.

После проверки работоспособности контактора стоит обратить внимание на качество болтовых соединений силовых контактов. На присутствие нагара, который следует удалить и качество затяжки. Так же, при необходимости, проверяется качество крепления корпуса пускателя к сборке, щиту и т.д. (верно и для теплвого реле, кнопок, автоматического выключателя, всех крепящихся деталей схемы).

Обычно сбоку пускателя имеются еются блокконтакты. Очень важная вещь в работе схемы управления. Без них пускатель притягивался бы, и соответственно электродвигатель запускался в работу, только при нажатии кнопки "пуск". Грубо говоря после нажатия кнопки "пуск" блок контакты шунтируют её и для работы электродвигателя больше не нужно держать нажатой кнопку "пуск". Это называется самоподхват.

Стандартный блокконтакт имеет две пары контактов. Нормальнозамкнутые и нормальноразомкнутые. То есть замыкающиеся при срабатывании и размыкающиеся при срабатывании пускателя соответственно. Блокконтакты прозваниваются точно так же как и контактор магнитного пускателя. В нормальном положении (мультиметром проверяется наличие/отсутствие контакта) и при прижатом подвижном контакте, рабочем (прозванивается наличие/отсутствие контакта на нормальнозамкнутом и нормальноразомкнутом контактах соответственно).

При необходимости блокконтакты легко заменяются, они прикрепляются пластиковыми защелками к корпусу пускателя. После того, как были проверены все элементы стандартной пускорегулирующей аппаратуры (так же в неё могут входить реле времени, трансформаторы тока и т.д.) стоит проверить состояние проводников, соединяющих между собой элементы схемы.

Силовые проводники должны иметь чистую целую поверхность изоляции, не иметь признаков нагрева около наконечников. При видимых признаках нагрева есть смысл проверить температуру данного участка пирометром при работе работе электросхемы. Следует принять меры по устранению неисправности, когда температура участка превышает допустимую.

Температура выше 70 о С является поводом для замены или перепайки наконечника проводника. Это очень важный момент. На который стоит особо обращать внимание. Так как при перегорании одного из проводников (либо контакта контактора например) электродвигатель начинает работать в ненормальном для него режиме и может выйти из строя. А вместе с ним и элементы пускорегулирующей аппаратуры.

Проводники участвующие в передаче управляющих сигналов (тонкие) в следствии вибрации или каких либо еще факторов могут переломится. Перелом под изоляцией может быть незаметен как визуально, так и на ощупь. Поэтому рекомендуется прозвонить каждый отдельный проводник мультиметром и при необходимости заменить на рабочий.

Проводники питающие катушку пускателя могут переломиться в следствии вибрации при работе самого пускателя. Поэтому целесообразно использовать медные проводники, а лучше медные мягкие проводники. Более устойчивые к вибрации и разного рода изгибам.

Нормальную работу ревизированной или исправленной схемы управления электродвигателем целесообразно проверять на работоспособность при отключенной “силе“. То есть когда силовой кабель, идущий на электродвигатель откинут от пускорегулирующей аппаратуры. При этом, после подачи напряжения на схему, проверяется пуск/стоп с кнопочного поста, так сказать схема “отхлапывается“.

При пуске, после срабатывания магнитного пускателя, необходимо проверить наличие напряжения на силовых контактах после пускателя. Это действие производится индикатором напряжения, имеющим соответствующие пределы измеряемого напряжения, с соблюдением необходимых мер техники безопасности.

Так же стоит отметить, что пускорегулирующая аппаратура, питающий кабель и электродвигатель должны эксплуатироваться в среде, которой соответствует их исполнение. Элементы схемы управления, болтовые соединения контактов и открытые токоведущие части должны быть закрыты от воздействия внешней среды и случайного прикосновения к ним человека или животного. Рекомендуется производить смазку болтовых соединений солидолом.

Весь рабочий инструмент обязательно должен быть промышленного производства, не допускается применение самодельных ключей, отвёрток, ножей и т.д. во избежание получения травм и порчи аппаратов. Перед работой следует проверить состояние инструмента, он не должен иметь повреждения изоляции, рабочей части, конструкции.

Выполняя описанные действия с соблюдением необходимой техники безопасности работник может быстро найти и устранить практически любые неполадки в схеме управления электропривода насоса, вентилятора и т.д. Для наглядности и упрощения работы необходимо иметь на месте работы принципиальную схему электрооборудования.

Оцените статью
Добавить комментарий

Adblock
detector