Силы действующие на автомобиль задачи

Силовой баланс автомобиля

Силы, действующие на автомобиль при прямолинейном движении

Прямолинейным движением автомобиля будем считать его равномерное или ускоренное движение по горизонтальной или наклонной прямой дороге (без виражей и поворотов). В этом случае на автомобиль действуют следующие силы:

  • сила тяжести автомобиля G , приложенная к центру тяжести, находящемся на расстоянии hц от поверхности дороги;
  • сила сопротивления атмосферного воздуха Pω , приложенная к центру парусности, расположенному на расстоянии hω от поверхности дороги;
  • суммарная касательная реакция Rx2 или сила тяги Рт , направленная по ходу движения автомобиля;
  • нормальные реакции дороги на колеса Rz1 и Rz2 , направленные перпендикулярно поверхности дороги;
  • сила сопротивления качению колес Pf , направленная в сторону, противоположную движению автомобиля (совпадает с касательной реакцией Rx1 );;
  • силы инерции поступательного движения Pj (проявляются при ускоренном движении), приложенная к центру тяжести автомобиля и направленная в сторону, противоположную ускорению;
  • сила сопротивления подъему Pα , приложенная к центру тяжести и направленная в сторону, противоположную движению (возникает при движении по дороге с уклоном);
  • сила Рпр на буксирном крюке в случае буксировки прицепа.

На рисунке 1 представлены все эти силы с учетом их направления по отношению к направлению движения автомобиля.

Для дальнейших теоретических выкладок примем следующие условия (допущения):

  • Два одноименных колеса (правые и левые) будем рассматривать, как одно.
  • Участок дороги на всем протяжении однородный с постоянным углом наклона α к горизонту и не имеет неровностей.
  • Нормальные реакции дороги прикладываются к осям колес.
  • Деформация шин и грунта (погружение колес в грунт) учитываются при определении силы сопротивления качению, но на схеме не показываются.

Сила тяги Рт подробно рассмотрена в предыдущей статье. При принятых выше условиях не имеет значения, сколько колес автомобиля являются ведущими и сколько ведомыми.

Сила сопротивления качению

Силой сопротивления качению автомобиля Pj называется сумма сил сопротивления качению всех его колес. В реальных условиях сопротивление качению отдельных колес автомобиля не бывает одинаковым даже при движении автомобиля по дороге с твердым покрытием.
На деформируемых грунтах любое сопротивление качению задних колес, движущихся по уже уплотненному грунту, значительно меньше, чем для передних. Для решения теоретических задач сопротивление качению определяется для автомобиля в целом.
На сопротивление качению влияют:

  • нормальная нагрузка на колеса;
  • характер и состояние дорожного покрытия;
  • удельное давление на грунт;
  • скорость движения автомобиля;
  • конструкция и состояние пневматических шин.

Нормальная нагрузка обусловлена полным весом автомобиля и влияет на сопротивление качению непосредственно, поскольку реакции дорожного покрытия или грунта можно считать пропорциональными нормальной нагрузке.
Потери, связанные с деформацией резины в шине (гистерезисные потери) зависят от радиальной деформации шины. Эти потери возрастают при увеличении нагрузки.
Кроме того, рост нормальной нагрузки приводит к увеличению удельного давления, а следовательно, и сопротивлению качения.

Дорожное покрытие оказывает существенное влияние на силу сопротивления качению колес Pf в случае, если оно не является твердым. Величина этой силы определяется работой прессования и выдавливанием в стороны грунта при погружении в него колес.

Удельное давление на грунт – это нормальная нагрузка на единицу площади опорного участка шины и может быть определено по формуле:

где cq – коэффициент, определяемый жесткостью каркаса шины, cq = 1 + p ;
p – давление воздуха в шинах.

Понижение удельного давления влияет на силу сопротивления качению колес Pf неоднозначно. При понижении давления возрастает деформация шин, вследствие чего растут гистерезисные потери.
В то же время понижение давления значительно уменьшает погружение шин в грунт (при отсутствии твердого покрытия) и тем самым снижает Pf .

Увеличение скорости движения приводит к увеличению потерь в шинах, в частности из-за того, что их упругие свойства не могут быть полностью использованы (часть шины не успевает полностью распрямиться). Кроме того, при повышении скорости деформации возрастает внутреннее трение в покрышке, что также ведет к увеличению Pf .

Большое значение имеют конструкция и состояние шин, их число и диаметр, а также рисунок протектора, форма и расположение грунтозацепов.

Увеличение числа колес приводит к возрастанию суммарных потерь. Чем больше диаметр колеса, чем оно меньше погружается в грунт, а значит, меньше сопротивление качению. Чем крупнее грунтозацепы и рельефнее протектор шины, тем сильнее колесо деформирует грунт, что также приводит к увеличению силы сопротивления качению колес Pf .
На дорогах с твердым покрытием увеличенные грунтозацепы и рельефный рисунок протектора также приводят к увеличению Pf , поскольку в этом случае растут гистерезисные потери в шине.

При изношенном протекторе уменьшается сопротивление качению, но при этом резко ухудшаются сцепные качества шины с дорогой.

Для эксплуатационных расчетов принимаются два допущения:

  • сопротивление качению прямо пропорционально нормальной нагрузке на колеса автомобиля;
  • для автомобилей с шинами низкого давления (0,15…0,45 МПа) на одном и том же грунте и при одинаковой нагрузке сопротивление качению одинаково независимо от их конструктивных особенностей.

Тогда сила сопротивления качению может быть выражена через нормальную нагрузку (или равную ей реакцию грунта Rz ) и коэффициент пропорциональности, называемый коэффициентом сопротивления качению f :

Коэффициент сопротивления качению f зависит от характера и состояния дорожного покрытия. Так, для асфальта, бетона или асфальтобетона он равен 0,1…0,3, для укатанной сухой грунтовой дороги – 0,02…0,03, для разбитой мокрой грунтовой дороги – 0,1…0,25, для обледенелой дороги – 0,01…0,03 и т. д.

Влияние скорости движения на коэффициент f сопротивления качению учитывает эмпирическая формула:

где f – коэффициент сопротивления качению при движении автомобиля со скоростью менее 15 м/с;
v – скорость автомобиля.

Сила тяжести и сопротивление движению

Сила тяжести G обусловлена массой m автомобиля, указываемой в его технической характеристике и может быть определена по известной формуле: G = mg , где g – ускорение свободного падения.

Масса снаряженного автомобиля – масса автомобиля без груза, полностью заправленного топливом, смазочными материалами и охлаждающей жидкостью, с запасным колесом, инструментом и оборудованием.
Полная масса автомобиля включает в себя еще массу водителя и груза по номинальной грузоподъемности (для грузового автомобиля) или по номинальной пассажировместимости (для автобусов и легковых автомобилей).
В расчетах обычно принимается полная масса.

Положение центра масс определяется у двухосного автомобиля расстояниями l1 и l2 до геометрических осей вращения колес соответственно переднего и заднего мостов. У трехосного автомобиля l2 – расстояние от центра масс до оси балансира задней тележки.
Расстояние L = l1 + l2 называют базой автомобиля.

При движении автомобиля по наклонному участку дороги с углом подъема α сила тяжести раскладывается на две составляющие:

  • G cosα – нормальная нагрузка автомобиля на дорогу, перпендикулярная дороге;
  • G sinα – сила сопротивления подъему (при спуске – скатывающая сила), обозначается Pα и направлена параллельно поверхности дороги: Pα = G sinα .

На крутых подъемах сопротивление подъему значительно превышает сопротивление качению. Так, при α = 20˚ Pα будет равна примерно 0,36 G , при α = 30˚ Рα = 0,5 G , тогда как Pf редко превышает 0,05…0,08 G .

При небольших значениях угла α синус может быть заменен тангенсом. В дорожном строительстве тангенс угла наклона дороги к горизонту называют продольным уклоном i , выражаемым в процентах. В этом случае сила сопротивления подъему равна:

Сила сопротивления качению и сила сопротивления подъему зависят от дорожных условий, так как коэффициент сопротивления качению f и угол подъема дороги α в совокупности определяют качество дороги, поэтому можно ввести такое понятие, как сила сопротивления дороги:

При движении автомобиля по наклонной дороге сила сопротивления качению определится из соотношения:

Получим следующую формулу для вычисления силы сопротивления дороги:

Pψ = G(f cosα + sinα) ≈ G(f + i) .

Выражение в скобках называется коэффициентом сопротивления дороги и обозначается ψ :

ψ = f cosα + sinα .

Тогда сила сопротивления дороги:

Сила инерции

Сила инерции (или сила сопротивления разгону) при поступательном движении автомобиля может быть определена из соотношения:

где j – ускорение автомобиля, m – масса автомобиля.

Так как в автомобиле имеются вращающиеся детали значительной массы, то они также влияют на сопротивление разгону автомобиля, создавая инерционные моменты.
Максимальный инерционный момент сопротивления изменению угловой скорости создают маховик двигателя и колеса, а также массивные детали агрегатов и узлов трансмиссии.
Чтобы учесть влияние вращающихся масс вводят коэффициент учета вращающихся масс δвр , который показывает, во сколько раз сила, необходимая для разгона с заданным ускорением поступательно движущихся и вращающихся масс автомобиля, больше силы, необходимой для разгона только его поступательно движущихся масс.

С учетом коэффициента δвр уравнение (1) будет иметь вид:

Значение коэффициента δвр определяется по формуле:

где jм – момент инерции маховика; ηтр – КПД трансмиссии; iтр – передаточное число трансмиссии; jк – суммарный момент инерции всех колес автомобиля; m – масса автомобиля; r – радиус колеса.

Энергия, затрачиваемая на разгон деталей двигателя на прямой передаче, в два-три раза, а на низших передачах в восемь-десять раз больше энергии, расходуемой на разгон колес.

В случае, если точное значение моментов инерции маховика и колес неизвестно, то коэффициент учета вращающихся масс δвр определяют по эмпирической формуле:

где δ1 ≈ δ2 от 0,03 до 0,05; mа – масса автомобиля с полной нагрузкой; m – фактическая масса автомобиля.

Читайте также:  Не закрывается лючок бензобака ваз 2114

При движении автомобиля с отключенной от двигателя трансмиссией коэффициент учета вращающихся масс может быть приближенно определен по формуле:

Сила сопротивления воздуха

Как и всякое тело, перемещающееся в воздушной среде, автомобиль со стороны атмосферного воздуха испытывает сопротивление движению, которое обуславливается двумя факторами: трением, возникающим в пограничных с поверхностью автомобиля слоях воздуха, и вихреобразованием в окружающих его потоках.

Движущийся автомобиль увлекает за собой непосредственно прилегающий к нему слой воздуха, который взаимодействует на соседний с ним слой и т. д., увлекая его за собой. Скорость каждого последующего слоя воздуха меньше, чем предыдущего, что и вызывает силы трения между слоями. Чем выше скорость движения автомобиля, тем большие массы воздуха будут увлекаться в движение, и тем больше суммарная сила трения, возникающая между слоями и поверхностью автомобиля.
Однако при скоростях, с которыми передвигаются автомобили, сопротивление, вызываемое трением в пограничных с автомобилем слоях очень мало, и им можно пренебречь в большинстве расчетов.

Образование вихревых потоков можно представить, предположив, что на неподвижный автомобиль направлен с достаточной скоростью поток воздуха. Ударяясь о лобовую поверхность кабины и кузова автомобиля, струи воздуха изменяют направление своего движения (рис. 1). При этом чем менее обтекаемую форму имеет автомобиль, тем интенсивнее и объемнее будут вызываемые им завихрения воздушных струй.
В результате вихреобразования возникает разрежение воздуха сзади автомобиля, тогда как перед ним воздух уплотняется, вследствие чего создается разность давлений воздуха впереди и сзади автомобиля.

Сопротивление воздуха при вихреобразовании зависит от площади поперечного сечения автомобиля (лобовой проекции), и особенно от его формы.
Усилению вихреобразования способствует наличие выступающих частей, прямых углов и резких переходов в профильной проекции автомобиля. Обтекаемые формы современных легковых, и особенно – гоночных автомобилей, существенно снижают сопротивление воздуха, вызываемое вихреобразованием.

Сопротивление воздуха при проектировании кузовов автомобилей определяют чаще всего опытным путем с помощью аэродинамической трубы, которая позволяет получить равномерный прямолинейный установившийся воздушный поток заданной скорости и даже температуры. В аэродинамической трубе можно не только исследовать обтекаемость автомобиля, но и определить эффективность очистки ветрового стекла и ряд других параметров, связанных с воздействием воздушного потока на автомобиль.

Для расчета силы сопротивления воздуха Pω аналитическими методами можно использовать формулу, полученную опытным путем (эмпирическая зависимость), которая справедлива для всех скоростей автомобиля, кроме самых малых:

где ρ – плотность воздуха;
c – коэффициент сопротивления воздуха, зависящий от формы автомобиля;
F – площадь лобового сопротивления, т. е. площадь проекции автомобиля на плоскость, перпендикулярную направлению движения;
v – скорость автомобиля.

Считая, что плотность ρ воздуха в реальных условиях движения автомобиля величина относительно постоянная, вводят понятие коэффициента kω обтекаемости автомобиля, который тоже можно считать постоянной величиной:

Тогда формула (3) примет вид:

Значения коэффициента обтекаемости зависят от формы кузова. Так, например, для автобусов капотной компоновки он равен 0,45…0,55, для автобусов вагонной компоновки – 0,35…0,45, для легковых автомобилей – 0,2…0,35, для гоночных автомобилей – 0,15…0,2 и т. д.

Площадь лобового сопротивления с достаточной степенью точности (погрешность не более 10%) можно определить по следующим зависимостям:

  • для грузового автомобиля F = BH , где H – высота автомобиля; B – колея автомобиля;
  • для легковых автомобилей F = 0,78 BaH , где Ba – наибольшая ширина автомобиля.

При расчетах силы сопротивления воздуха Pω важно определить место приложения данной силы, так называемый центр парусности.

Точное положение центра парусности автомобиля определяется опытным путем в аэродинамической трубе. Для приблизительных расчетов принимают высоту положения центра парусности равной половине высоты автомобиля, а его расположение по горизонтали – на оси симметрии лобовой проекции автомобиля.

При скоростях выше 100…120 км/ч со стороны воздушных потоков на автомобиль начинает действовать так называемая подъемная сила, имеющая аэродинамическую природу, направленная вертикально вверх и стремящаяся оторвать автомобиль от поверхности дороги.
Это негативное явление приводит к потере устойчивости и управляемости автомобиля, и связано с тем, что под днищем автомобиля, благодаря его плоской форме, скорость потока воздуха ниже, а давление в воздушном потоке выше, чем над автомобилем, где, благодаря ускорению воздушных масс из-за криволинейной формы кузова автомобиля, давление снижается. В результате на автомобиль начинает действовать подъемная сила, аналогичная подъемной силе, действующей на крыло самолета.
У спортивных автомобилей благодаря специальной форме кузова и использованию аэроэлементов (антикрыло) эту силу направляют вниз, увеличивая сцепление колес с дорогой.

Силы, возникающие при буксировке прицепов

В случае буксировки прицепа с помощью буксирного устройства на крюке возникает сила Рпр , которая тоже направлена в сторону, противоположную силе тяги.
Разложив силу Рпр на составляющие можно записать:

где G’ , P’j , P’f – соответственно сила тяжести, силы сопротивления инерции и качению колес прицепа.

Сила сопротивления воздуха для прицепа в приближенных расчетах не учитывается, так как она прилагается к центру парусности тягача. Кроме того, автопоезда не передвигаются на больших скоростях, когда сила сопротивления воздуха достигает существенных значений.

Нормальная реакция дороги

Нормальная реакция дороги Rz не совершает ни полезной работы, ни работы сопротивления движению, поскольку направлена перпендикулярно направлению движения автомобиля. Однако при изучении тягово-скоростных свойств автомобиля их необходимо учитывать, поскольку Rz определяет силы сопротивления качению и сцепление колес с опорной поверхностью (дорогой).
Нормальные реакции необходимы при оценке таких эксплуатационных свойств автомобиля, как торможение, управляемость, устойчивость и проходимость, а также при расчетах мостов.

Сила тяжести G автомобиля распределяется по всем его колесам, и со стороны дороги действуют соответствующие нормальные реакции на каждое колесо. При этом равномерное распределение массы автомобиля на его колеса хотя и могут иметь место, но в порядке исключения. Поэтому на разные колеса автомобиля действуют разные по величине нормальные реакции, в соответствии с распределением нагрузки на оси и мости, а также на каждое колесо.

Рассмотрим силы, действующие на автомобиль, стоящий на горизонтальной поверхности (рис. 2, а).
Из центра тяжести автомобиля действует вектор силы тяжести G , расположенный на расстоянии l1 от передней оси, и на расстоянии l2 от оси заднего моста. В соответствии с законами статики нормальные реакции Rz1 и Rz2 на колеса передней и задней оси обратно пропорциональны расстоянию от центра тяжести до этих осей:

где L – расстояние между осями автомобиля.

Во время движения нормальные реакции дороги изменяются под действием различных сил и моментов. На рис. 2,б показана схема сил, действующих на автомобиль при его разгоне и на подъеме. Расчетным путем можно доказать, что нормальнее реакции дороги на передние колеса уменьшаются, а на задние увеличиваются с ростом крутизны подъема, интенсивности разгона, а также с увеличением силы сопротивления воздуха движению автомобиля.

Изменение динамических нормальных реакций относительно статических учитывает коэффициент изменения нормальных реакций mp , который представляет собой отношение нормальных реакций, действующих на мост автомобиля при его движении, к реакциям, действующим на этот же мост неподвижного автомобиля:

Во время разгона автомобиля предельные значения коэффициентов составляют:
mp1 от 0,55 до 0,7; mp2 от 1,2 до 1,35, т. е. во время разгона нагрузка на передний мост уменьшается, а на задний увеличивается по сравнению с нагрузками в статическом положении.
При торможении автомобиля наблюдается обратное явление. Это объясняется тем, что при разгоне автомобиль как бы «приседает» на задние колеса, а при торможении испытывает «кивок» вперед.

Крутящий момент двигателя, подведенный через механизмы трансмиссии к ведущим колесам автомобиля , вызывает их вращение. В месте соприкосновения колеса с дорогой от крутящего момента возникает окружная сила , а со стороны дороги — касательная реакция (см. рис. 72), равная по величине окружной силе, но направленная в противоположную сторону. Суммарная касательная реакция ведущих колес передается на задний мост и вызывает движение всего автомобиля, поэтому называется тяговой силой.

Величина тяговой силы тем больше, чем больше крутящий момент двигателя и передаточные числа коробки передач и главной передачи. Но величина тяговой силы не может превысить силу тепления ведущих колес с дорогой.

Если тяговая сила превысит силу сцепления, то ведущие колеса будут пробуксовывать.

Сила сцепления равна произведению коэффициента сцепления на сцепной вес. Для тягового автомобиля сцепной вес равен чесу, приходящемуся на ведущие колеса автомобиля. При торможении сцепной вес автомобиля равен его весу, приходящемуся на затормаживаемые колеса.

Коэффициент сцепления зависит от типа и состояния покрытия дороги, от конструкции и состояния шины (давление воздуха, рисунок протектора), от нагрузки и скорости движения автомобиля.

Величина коэффициента сцепления снижается при мокрой и влажной поверхностях дороги, особенно с увеличением скорости движения и при изношенных шинах.

Например, для сухой дороги с асфальтобетонным покрытием коэффициент сцепления равен 0,7—0,8, а для мокрой — 0,35 — 0,45. При обледенелой дороге коэффициент сцепления снижается до 0,1—0,2.

Сила тяжести , или вес, автомобиля приложена в центре тяжести. У современных легковых автомобилей центр тяжести располагается на высоте 0,45—0,6 м от поверхности дороги и примерно посередине автомобиля. Поэтому полный вес легкового автомобиля распределяется по его осям примерно поровну, т. е. сцепной вес равен 50% полного веса. Высота расположения центра тяжести у грузовых автомобилей 0,65—1,0 м. У полностью груженых грузовых автомобилей сцепной вес составляет 60— 75% полного веса. У автомобилей со всеми ведущими осями сцепной вес равен полному весу автомобиля.

Читайте также:  Калина не заводится щелкает

При движении автомобиля указанные соотношения изменяются, так как происходит продольное перераспределение полного веса автомобиля между его осями: при передаче ведущими колесами тяговой силы больше нагружаются задние колеса, а при торможении автомобиля — передние колеса.

Кроме того, перераспределение полного веса автомобиля между передними и задним и колесами имеет место при движении на подъем и под уклон.

Перераспределение нагрузки, изменяя величину сцепного веса, влияет на сцепление колес с дорогой и устойчивость автомобиля.

Силы сопротивления движению автомобиля

Тяговая сила на ведущих колесах обеспечивает преодоление внешних сил, возникающих при движении автомобиля.

При равномерном движении автомобиля по горизонтальной дороге такими силами являются: сила сопротивления качению и сила сопротивления воздуха.

При движении автомобиля в гору ( рис. 138 ) возникает сила сопротивления подъему, а при разгоне автомобиля — сила сопротивления разгону (сила инерции).

Рис. 138. Схема сил, действующих на автомобиль при равномерном движении на подъеме

Сила сопротивления качению возникает вследствие деформации шин и поверхности дороги. Она равна произведению полного веса автомобиля на коэффициент сопротивления качению.

Коэффициент сопротивления качению зависит от типа и состояния покрытия дороги, конструкции шин, их износа и давления воздуха в них, скорости движения автомобиля.

Например, для дороги с асфальтобетонным покрытием коэффициент сопротивления качению равен 0,014—0,020, для сухой грунтовой дороги — 0,025—0,035.

На твердых дорожных покрытиях коэффициент сопротивления качению резко увеличивается при снижении давления воздуха в шинах.

Коэффициент сопротивления качению возрастает с ростом скорости движения, а также с увеличением как крутящего, так и тормозного момента.

Сила сопротивления воздуха зависит от коэффициента сопротивления воздуха, лобовой площади и скорости движения автомобиля.

Коэффициент сопротивления воздуха определяется типом автомобиля и формой его кузова, а лобовая площадь — колеей колес (расстоянием между центрами шин) и высотой автомобиля.

Сила сопротивления воздуха возрастает пропорционально квадрату скорости движения автомобиля (если скорость возрастает в 2 раза, сопротивление воздуха увеличивается в 4 раза).

Сила сопротивления воздуха возрастает пропорционально квадрату скорости движения автомобиля (если скорость возрастает в 2 раза, сопротивление воздуха увеличивается в 4 раза).

Сила сопротивления подъему тем больше, чем больше вес автомобиля и крутизна подъема дороги, которая оценивается углом подъема в градусах пли величиной уклона, выраженной в процентах. При движении автомобиля под уклон сила сопротивления подъему, наоборот, ускоряет движение автомобиля.

На автомобильных дорогах с асфальтобетонным покрытием продольный уклон обычно не превышает 6%. Если коэффициент сопротивления качению принять равным 0,02, то общее сопротивление дороги составит 8% от полного веса автомобиля.

Сила сопротивления разгону зависит от массы автомобиля, его ускорения (прироста скорости в единицу времени) и массы вращающихся частей (маховик, колеса), на ускорение которых также затрачивается тяговая сила.

При разгоне автомобиля сила сопротивления разгону направлена в сторону, обратную движению. При торможении автомобиля и замедлении его движения сила инерции направлена в сторону движения автомобиля.

Введение

Нашу современную жизнь трудно представить без автомобиля. Нет такой профессии на Земле, представитель которой не нуждался бы в автомобиле. На автомобиле или на автобусе мы добираемся до места назначения. Когда выходишь из дома, то почти сразу мы видим автомобиль.

Первый автотранспорт был изобретен много лет назад. Он восхищал своей эксклюзивностью и новаторством. Сейчас в мире представлены тысячи различных моделей машин, которые рассчитаны на разных потребителей. Но часто ли водители задумываются над следующими вопросами.

Каковы причины движения автомобиля? Какие силы действуют на автомобиль?

В нашей работе мы попытаемся ответить на это вопросы, используя специальную литературу. Рассмотрим какие внешние силы действуют на автомобиль во время движения по прямой и наклонной поверхности. Определим какие силы препятствуют, а какие способствуют движению автомобиля. Отдельное внимание уделим процессу торможения, так как с помощью тормозов можно не только остановить и удержать машину на месте, но и преодолеть скользкий участок, опасный поворот, развернуться и даже перескочить неширокую канаву или выбоину.

Силы, действующие на автомобиль

Автомобиль, преодолевающий подъем, одновременно движется вверх и вперед. В общем случае на подъеме при ускоренном перемещении автомобиля на него действуют силы, движущие его, силы оказывающие сопротивление движению автомобиля, и силы, составляющие нормальные реакции дороги на передние Zп и задние Zз колеса, вызванные перпендикулярной плоскости дороги составляющей силы тяжести автомобиля.

Покрышка соприкасается с дорогой бесконечно большим числом точек. В каждой из этих точек на покрышку действует бесконечно малая сила – элементарная реакция дороги. Равнодействующую элементарных сил, которая действует со стороны дороги на колесо в области контакта, называют реакцией дороги.

Силы, движущие автомобиль, возникают в результате взаимодействия ведущих колес автомобиля с дорогой и называются силами тяги Fт (рис. 1).

К силам, оказывающим сопротивление движению автомобиля, относятся силы сопротивления качению передних Рск.п. и задних Рск.з. колес, действующие в плоскости дороги; сила сопротивления подъему Рсп, сила сопротивления воздуха Fсв, сила инерции Fи , приложенная к центру масс ЦМ автомобиля и на­зываемая силой сопротивления разгону.

Силы Zп и Zз составляют нормальные реакции дороги на передние и задние колеса соответственно. Они вызваны перпендикулярной плоскости дороги, составляющей GN силы тяжести G автомобиля с полной нагрузкой.

Рис.1. Внешние силы, действующие на автомобиль во время движения: ЦМ- центр масс; G – Сила тяжести автомобиля с полной нагрузкой;

GN – составляющая силы тяжести, перпендикулярная плоскости дороги; Рсп _ сила сопротивления подъему; Рск.п , Рск.з – сила сопро­тивления качению передних и задних колес; Fсв – сила сопротивления воздуха; Fт – сила тяги; Fи – сила инерции; a – угол, характеризующий крутизну подъема; Н- превышение дороги; S- заложение дороги; Zn, Zз– нормальные реакции дороги на передние и задние колеса.

Сила сопротивления качению

Сила сопротивления качениюРск постоянно мешает движению и представляет собой целую совокупность сил. Это силы, деформирующие и перемещающие грунт; деформирующие шины; силы трения колес о колею; силы, образующиеся при преодолении выбоин, и т. п.

Принято считать, что:

где: Рск – сила сопротивления качению;

f = 0,015 – 0,3 – коэффициент сопротивления качению, учитывающий состояние дороги, давление в шинах и пр.;

G – сила тяжести автомобиля.

Сила сопротивления качению Рск составляет подобающую долю от силы тяжести автомобиля.

Сила сопротивления подъему

Сила сопротивления подъемуРсп – Крутизну подъема охарактеризовывают углом в градусах (см. рис. 1) или же уклоном дороги i, который представляет собой отношение превышения Н дороги к заложению S, т. е. Силу тяжести G автомобиля, преодолевающего подъем, можно разложить на две составляющие: на силу Рсп, параллельную дороге, и силу Gn=G-cosα, перпендикулярную ей.

Силу Рсп= G-sinα, называют силой сопротивления подъему, где

Также силу сопротивления подъему выражают формулой

При перемещении на спуске сила Рсп ориентирована в сторону перемещения автомобиля и, следовательно, меняет свой знак (рис. 1, в) и, в отличие от силы сопротивления качению, может стать и движущей. Вследствие этого угол а и уклон дороги i считают положительными при перемещении автомобиля на подъеме и отрицательными при его перемещении на спуске.

При перемещении автомобиля на подъеме силу Рсп можно объединить с Рск, а поскольку обе эти силы пропорциональны силе тяжести автомобиля, то:

При перемещении автомобиля под уклон

Сила сопротивления воздуха (аэродинамическое сопротивление)

Сила сопротивления воздуха Fсв– данная сила считается следствием давления встречных частиц воздуха на движущийся автомобиль, разрежения, образующегося позади автомобиля, завихрения воздуха вокруг автомобиля и трения воздуха о поверхность автомобиля. В каждой точке поверхности автомобиля в итоге соприкосновения его с воздушной средой появляются элементарные силы, нормальные к поверхности и касательные к ней. Для упрощения расчетов элементарные силы сопротивления воздуха, распределенные по всей поверхности автомобиля, заменяют сосредоточенной силой сопротивления воздуха FCB. Опытным путем установлено, что сила сопротив­ления воздуха равна

kв — коэффициент сопротивления воздуха, зависящий от формы и качества отделки поверхности автомобиля 0,20 – 0,30H·m 4 ;

Sл — лобовая площадь автомобиля;

V — скорость движе­ния автомобиля.

Из формулы видно, что сопротивление воздуха находится в зависимости от скорости автомобиля, его обтекаемости, величины площади попе­речного сечения, плотности воздуха. Существенное значение Fсв приобретает только при высоких скоростях, так как зависит от квадрата скорости.

Сила, разгоняющая автомобиль.

Для автомобиля характерным считается неравномерное движение. Показателями разгона являются ускорение, время и путь разгона. В общем случае перемещения автомобиля сила тяги Fт уравновешивается силами сопротивления перемещения:

При разгоне автомобиля, т. е. при перемещении автомобиля с ускорением а, появляется сила инерции Fи автомобиля, противодействующая разгону, равная

где m – масса автомобиля;

а – ускорение автомобиля.

Влияние инерционного момента вращающихся масс учитывается коэффициентом  относительного увеличения массы автомобиля, предусматривающим воздействие вращающихся масс, показывающим, во сколько раз сила, необходимая для ускорения автомобиля, больше силы инерции его поступательно движущейся массы.

В соответствии с этим общая сила сопротивления разгону

nкп – передаточное число коробки передач, на которой производится разгон.

Мощность, которая имеется для обеспечения ускорения, представляет собой разность между мощностью, требующейся при данных условиях для преодоления сопротивления движения, и мощностью, подводимой к ведущим колесам.

Мощность, важная для перемещения автомобиля с ускорением

Читайте также:  Слетела трубка омывателя заднего стекла

V — скорость автомобиля.

Из приведенной формулы видно, что чем автомобиль легче, тем большее ускорение получится развить при схожей мощности мотора.

В случае если автомобиль движется без разгона (Fp = 0 и Fи = 0), вся сила тяги тратится на преодоление сил сопротивления, и равна:

В случае, когда автомобиль замедляет ход, сила тяги становится меньше суммарной величины сил, препятствующих перемещению.

Сила тяги автомобиля.

Энергия от мотора к ведущим колесам передается через трансмиссию: сцепление, коробку передач, карданную передачу, главную передачу, дифференциал и полуоси. Благодаря наличию в трансмиссии коробки передач и главной передачи, суммарный крутящий момент Мкр на ведущих колесах автомобиля больше момента мотора Мдв.

Крутящий момент Мкр вызывает в месте контакта колеса с дорогой касательную реакцию дороги, движущую автомобиль, т. е. силу тяги. На теоретическом уровне ведущее колесо взаимодействует с дорогой в одной точке (практически же – в «пятне контакта»). Активной в этой точке является сила, с которой колесо «толкает» дорогу. Вот тут-то и появляется ответная (реактивная) сила FT реакции дороги, которая «толкает» машину. Величина силы тяги равна отношению крутящего момента на полуосях к радиусу ведущих колес, т. е., Мкр -крутящий момент на колесе,

R – статический радиус колеса.

Таким образом, для определения силы тяги необходимо знать радиус R ведущего колеса и момент Мкр. Так как на колеса автомобиля установлены эластичные пневматические шины, то радиус колеса во время движения изменяется под влиянием действующих на колесо сил. Различают статический радиус колеса ( расстояние от поверхности дороги до оси неподвижного колеса, значение которого приводится в технической характеристике шины), динамический радиус колеса (расстояние от поверхности дороги до оси катящегося колеса) и радиус качения колеса (радиус условно недеформирующегося кольца, имеющего с данным эластичным колесом схожую угловую и линейную скорости). Для простоты расчетов силы тяги считают радиус колеса постоянным и равным статическому радиусу колеса.

Сила сцепления шины с дорогой

Сила сцепления покрышки с дорогой Рсц. Для того чтобы автомобиль имел возможность стабильно ехать, тормозить и поворачивать, необходимо надежное сцепление покрышек с дорогой. Сила сцепления Рсц находится в зависимости от сцепного веса автомобиля и скорости перемещения автомобиля, а также от состояния дороги и покрышек: где:

Gсц — сцепной вес автомобиля,

Коэффициент сцепления покрышек с дорогой определяет проходимость автомобиля при перемещении по влажному грунту и по скользкой дороге.

Сцепной вес автомобиля возможно, увеличить, увеличивая количество ведущих колес или смещая центр тяжести в сторону ведущего моста.

От сцепления колес с дорогой зависят максимально вероятные силы тяги и торможения, а также боковая устойчивость автомобиля.

Если сила тяги приложенная к колёсам превышает силу сцепления, то при попытке тронуться с места ведущие колеса автомобиля пробуксовывают. Если тормозная сила колеса больше силы сцепления, колесо блокируется. И в том и в ином случаях возникает юз проскальзывание колеса относительно опоры. Юз наступает тогда, когда скорость точки касания колеса с дорогой не равна нулю относительно дороги. В случае если эта точка неподвижна относительно дороги, колесо не будет проскальзывать до тех пор, пока действующие на него в точке касания силы не превысят силы трения покоя.

Автомобиль движется благода­ря наличию силы трения покоя. Ведь, если бы этого трения не было, колеса всегда проскальзывали бы относительно опоры, т. е. прокручивались бы при попытке разогнать автомобиль и блокировались бы при попытке его остановить. И если на льду колесо буксует или скользит, это означает, что соответственно силы тяги или торможения превышают силу трения (Рсц применительно к автомобилям). Очевидно, что условием движения автомобиля без юза являются соотношения:

FT 2 /2) превращается в тепло. Максимально возможное при торможении замедление:

g — ускорение свободного падения.

Но это лишь теоретически возможное замедление. Реально же значение замедления а меньше по многим причинам.

Во время экстренного торможения тормозной путь окажется равен:

V — скорость автомобиля, измеряемая в м/с, в момент начала торможения;

а — максимально возможное замедление автомобиля при торможении.

Формулы наглядно демонстрируют, что, если в результате изменения дорожных или погодных условий значение ᵠсц упало, во столько же раз снижаются максимально возможные сила торможения и замедление автомобиля.

Длина тормозного пути прямопропорциональна квадрату скорости автомобиля в момент начала торможения.

Из практики известно, что юз задних колес наступает чаще юза передних так как при торможении у автомобиля опускается передняя часть.

Это объясняется тем, что при торможении автомобиля сила инерции FH, которая приложена к ЦМ, действуя на плече Н (рис. 2, б), и тормозные силы Рторм, лежащие в плоскости дороги, образуют относительно ЦМ тормозной момент Мторм, который вызывает перераспределение нормальных нагрузок между передним и задним мостами. При этом нагрузка на передние колеса увеличивается, а на задние уменьшается. Поэтому нормальные реакции Zп и Zз, действующие соответственно на передние и задние колеса автомобиля во время торможения, значительно отличаются от нагру­зок Gп и Gз, которые они воспри­нимают в статическом состоянии

Во время резкого торможения автомобиля реакция на переднюю ось у легковых автомобилей может возрасти в 1,5 – 2 раза, а на заднюю ось уменьшиться в 0,5 – 0,7 раза.

Степень распределения суммарной нагрузки по осям при торможении зависит от высоты расположения центра масс и от расстояния между осями. С уменьшением нагрузки на заднюю ось допустимые тормозные усилия на задних колесах уменьшаются, а на передних – увеличиваются; следовательно, при торможении задние колеса более склонны к юзу.

Рис.2. Силы, действующие на ав­томобиль при торможении и остановке: ЦМ – центр масс; Н – расстояние между ЦМ и пло­скостью дороги; Рторм – тор­мозная сила; Мторм – тормозной момент; G – вес автомобиля;Gсц – сцепной вес автомобиля

Рис.3. Силы сцепления колеса с дорогой, действующие в пятне контакта колеса: Fт -сила тяги; F́т– сила тяги при интенсивном разгоне; Рторм -сила торможения;

Р́торм – сила торможения при интенсивном замедлении; Р́бок.сц. – поперечная сила сцепления при интенсивном разгоне или торможении; Рбок.сц. – поперечная сила сцепления; Рсц – сила сцепления.

В процессе торможения реакция на передние колеса увеличивается, а на задние уменьшается. Поэтому для полной реализации силы сцепления при экстренном торможении необходимо, чтобы тормозные силы были пропорциональны нормальным реакциям. Исходя из этого делают так, чтобы передние колеса тормозили настолько сильнее, насколько больше при торможении они прижимаются к дороге. Это позволяет при торможении получить наибольшую тормозную силу, поскольку сила сцепления каждого колеса пропорциональна приходящейся на него нагрузке.

Для того чтобы предотвратить блокировку задних колёс применяется регулирование давления в тормозном приводе, которое обеспечивает ограничение роста давления в тормозных механизмах задних колес при уменьшении реакции на задние колеса автомобиля. Клапан регулятора давления перекрывает подвод жидкости к тормозным механизмам задних колес в случае, когда давление в ее тормозном контуре возрастает до предельного, угрожающего блокировкой колес. Более совершенные антиблокировочные системы с электронными датчиками скорости вращения колес предотвращают блокировку колес при любых значениях коэффициента сцепления.

Заключение

В настоящей работе были рассмотрены силы, действующие на автомобиль. К ним относятся:

Сила сопротивления качению, которая всегда препятствует движению и возникает вследствие деформации шин и поверхности дороги;

Сила сопротивления подъему может быть направлена как в сторону движения, так и против него. В процессе подъема она действует в направлении, противоположном движению, и является силой сопротивления движению. При спуске эта сила, направленная в сторону движения, становится движущей;

Сила сопротивления воздуха зависит от коэффициента сопротивления воздуха, лобовой площади и скорости движения автомобиля;

Сила разгоняющая автомобиль, которая зависит от ускорения, времени и пути разгона;

Сила тяги автомобиля возникает при передачи крутящего момента с двигателя на колеса и для её определения необходимо знать радиус ведущего колеса;

Сила сцепления шины с дорогой зависит от сцепного веса автомобиля и скорости движения, она нужна для того, чтобы автомобиль мог устойчиво двигаться, тормозить и поворачивать.

Эти силы, действующие на автомобиль во время движения, влияют на изменения показателей эффективности работы автомобиля. К этим показателям можно отнести скоростные свойства автомобиля, топливная экономичность, износ деталей автомобиля, аэродинамические свойства.

Учет этих показателей позволит повысить эффективность использования автомобильного транспорта, и сократить число дорожно-транспортных происшествий.

Литература

Ваганов В.И. Вождение автотранспортных средств / Ваганов В.И., Рывкин А.А. – М.:Транспорт, 1990 – 224 с.

Горбачев М.Г. Безопасное вождение современного автомобиля / Горбачев М.Г. – м.: Рипол Классик, 2007 – 232

Калисский В.С. Автомобиль: Учебник водителя третьего класса / Калиссий В.С., Манзон А.И., Нагула Г.Е. – 5-е изд.,стереотип. – М.: Транспорт, 1980. – 368 с.

Николенко В.В. Вождение автомобиля. Практическое пособие / Николенко В.В. – 1991 – 62 с.

Тимовский А.А. Основы управления автомобилем и безопасность дорожного движения / Тимовский А.А., Нестеренко В.Б. – Арий, – 2009, 146 с.

Шухман Ю.И. Основы управления автомобилем и безопасность движения / Шухман Ю.И. – м,: ООО «Книжное издательство «За рулем», 2006.-160 с.

Оцените статью
Добавить комментарий

Adblock detector